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Effects of bias on the kinetics ofA+B— C with initially separated reactants
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The effects of a constant field on the early-time kinetic behavior ofthdé8 — C reaction-diffusion system
with initially separated reactants are analyzed. This is in order to account for the pressure effect resulting from
the injection of the reactants on both sides of the experimental capillary. The kinetics at early times depends on
the magnitude of the field relative to the reaction rate constant, in a suitable set of units. An approximate
solution is given for the case in which the effect of the reaction is smaller than that of the bias. We show that
the production rate of is initially proportional tot*? with a crossover to proportionality tg a behavior
which has been experimentally observed. The converse case, in which the effect of the bias is smaller than that
of the reaction, has been studied numerically, and exhibits effects of bias only in the long-time limit.
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PACS numbd(s): 05.40:+j, 82.20,-w, 82.30—b

. INTRODUCTION b 92b
E = DBW —kab,
A considerable literature has developed within the last 15

years on the kinetics of chemical reactions in restricted ge\'/vhereDA and Dy, are diffusion constants for speciésand

ometries. Interest i.n this class of problems is ggnerated b?é, respectively. The supposition that the species are sepa-
the fac.t the.‘t restricting Fhe geometry can lead to kinetic €U8ated att=0 is built into the initial conditions, which are
tions differing substantially from those in general use. Initial '

theoretical contributions in this area were made by Ovchin-

nikov and ZeldovicH1] and by Toussaint and Wilcz€R]. a(x,00=agH(x), b(x,00=bo[1-H(X)]. ©)

A review of recent research directions in this area is to be . o ]

found in [3]. Much of the literature devoted to the subject HereH(x) is the Heaviside step function amg andb, are

assumes an initially uniform mixture of reactant species, ghe initial (uniform) concentrations of specied and B,

condition which would be difficult to implement in the labo- respectively. This mean-field description has been argued by

ratory. Some time ago @faand Raz considered the kinetics Cornell etal. [7] to be valid above an upper critical

at long times of a one-dimensional reaction-diffusion systenflimensiond,,=2, and thus is suitable for experimental

for the reactionA+B— C in which theA andB species are  Systems. Results for systems below this critical dimension,

initially separated in space rather than being uniformlyin particular in one dimension, have been obtained by

mixed [4]. This system has been implemented in the capil-Cornellet al.[7] and Araujoet al. [8].

lary experiments of Koo and Kopelm&h]. The experiments

were based on optical absorbance profile measurements

along the capillary, using a moving system of light source, IEU?

filters, slit unit, and a photomultiplier tube as a detectme

Fig. 1. Subsequently the theoretical study of this system was

extended so as to examine the dynamical behavior of several

chemically interesting parameters at short tirfés - S2em >
Thus far theoretical investigations of the system have

mainly been based on a mean-field diffusion-reaction model

in which the rate of production of the produ¢thas the form Glass reactor

PMT

e —qt— 5lit unit

p—

R(x,t)=ka(x,t)b(x,t). (1) Ll
[ - filters attached to fhe solenoid

A

In this relationa(x,t) is the local concentration of species
A at positionx at timet, b(x,t) is the analogous concentra- Light source
tion of speciesB, andk is taken to be a constant. In this

framework the equations that govern the reaction kinetics are

FIG. 1. A view of the experimental system of Koo and Kopel-
(2) man[5]. The top of the figure is a side view of the glass reactor and
the bottom is a top view of the experimental setup.
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12 ‘ ‘ . rateR(t). It can be seen that the initial increase of this quan-
tity consists of two parts, the first ist&? behavior, followed

by a sharper slope which tends towards a proportionality to
t. In the present paper we explore a possible effect for inter-
preting these experimental data.

In the capillary experiments as schematized in Fig. 1 the
two chemical species are injected at the two ends of the tube
and pushed towards the center, at which point the reaction-
diffusion process begins. Earlier theoretical analyses of this
experiment are based on the assumption that the movement
of the reacting species is purely diffusive, which is equiva-

o lent to there being no residual effects of the initial injection
06 | | process. The present analysis is based on an assumption that
a the initial pressure plays a continuing role in determining
kinetic behavior. This effect will be modeled in terms of
convective terms added to both of the equations in 2p.

A | which leads to the set of equations to be analyzed:

—_
o
T

o
[
o

u]

Spatially integrated absorbance per time
&
/o‘,19

da_ #a LI
. . ‘ 7 —Pa 2 Tuan s —Kab,
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time (min) ®
FIG. 2. Experimental result§og-log ploY of the spatially inte- db b b
grated absorbance per time, which is proportional to the global E:DBW_UB&_kabv
reaction rateR(t). The crossover from*2 to t behavior is indicated
by the two slopes.

in which v,=0 and vg=0 are the(constank velocities
Other quantities which can be derived in terms ofcaused by the uniform pressures. The initial conditions for

R(x,t) include the global production rate & defined by ~this set of equations are just those shown in@y.
R(t)= 7% R(x,t)dx, the location of the center of the reac- Any type of analysis of the reaction-diffusion equations in

tion front, x;(t), i.e., the position at which the local reaction Eq. (5) will depend on the magni.tudes. Qf“ andvg relat_ive
rate is a maximum, and the width of the peak arou(d), a to k. We follow our earlier work in deriving an approximate

guantity to be denoted bw(t). This function, essentially a solution to Eq.(5) using a perturbation analysi] for sys-

: ; : tems in whichk<v ,,vg. This is equivalent to studying the
variance, is defined b ) cAVB . ;
+ym short-time behavior of the system. The case in which the
f [x—xX¢(t)]?R(x,t)dx inequality is reversed proved analytically intractable since
WA(t) = — @) the zeroth order equation is nonlinear. One expects that at

+oo very long times the global reaction rate should primarily be

ﬁw R(x,t)dx determined by field effects. However, at very early times the
influence ofv 5, for example, will only begin to play a role

in determining kinetic behavior at a time of the order of
(vavaghe) 1. This time would be within the short-time re-
gion only fork<uv,,vg. Hence in the following exposition
we present an analysis of lowest order effects for this case,
and numerical results for the converse ckse p,vp.

The analysis if6] indicated that at short timg®r, equiva-
lently, smallk) both R(t) andw(t) are approximately pro-
portional tot*2. Gdfi and Raz analyzed the behavior of
these quantities in the asymptotic regime, finding tRét)
and w(t) fell off at a rate proportional ta~*? and t*/6,
respectively.

Some of the predicted dependences on time have been

confirmed experimentall}s]. In particular, the possibly sur- II. ANALYSIS
prising nonmonotonic behavior of;(t) has been observed , , . o
for a theoretically predicted set of parametf9% However, The first step in the perturbation analysis is to convert Eq.

the initial increase in the global reaction rate has not beef® o dimensionless variables. It will be assumed that
clearly obtained. In Fig. 2 we show experimental data for thé2NdDg are approximately of the same order of magnitude, as
reaction CF* + Xylenol Orange— product. These reactants aré the pairsdg,bo) and (v ,vg). The variables andb in
have been used in a few experimental studies of the shorEd- (5 will be replaced by dimensionless variablesand
time behavior[9,10], due to the noninstantaneous reaction defined by the transformatiorss=as« andb=boB. The
(finite reaction constark) in this case. In the particular data two dependent variables, the tirheand the spatial variable
shown, the initial concentrations arexa0~5 M for Cr3* X, Will be replaced by a dimensionless timeand a dimen-
and 7.5<10~* M for Xylenol Orange. Product formation Sionless distancg which are, respectively, defined by

with time is measured via optical absorption measurements,

using the system described in detail in Ré&f| (see Fig. L 1 1
In Fig. 2 we plot the spatially integrated absorbance per time t

=, X=—. (6)
of the product which is proportional to the global production aoboVDaDg Vaghg
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Finally, we define the dimensionless parameters e o p
Ro(7)= 27 || buyr+ = | d(bu7—p D),
. DA - Ua _ k r - \/B
D=\/= v= , &= (7 (14)
DB \/aoboDADB \/aoboDADB
and the ratios in which
Up =1}
o T \g' ® p— YDULT0), (15
A ° V2(D+1)
The perturbation expansion is based on the assumption that
e<l. ) ] ~ Hence at very small values of the dimensionless tintne
Equation(5) can then be rewritten in terms of these vari- fings
ables as
Ja Pa Jda & e +o0 p
E_DW_FUW_FQ,'B' RO(T)NF\/ZJ_w(I)(\/_B)(I)(_p\/E)dp' (16)
B 1 9°B B ®
—= 0v——reapf, which means that at these times the global reaction rate in-

== ——
dr Doy % creases as®? exactly as in the field-free case treated 6

which are to be solved subject to the initial conditions This is to be expected since the bias does not begin to be felt

a(y,0)=H(y) and B(yio): 1— H(y) The functions until times of the order of 1.

a(y,7) andB(y,7) will next be expanded in terms of powers At longer times when the bias begins to be imporfast,
of £ as whenv 7=0(1)] we can approximate to the integrand in Eq.

(14) by making the crude assumption that it is equal to 1 in
” the interval (bv+Dr, bv7/D) and equal to zero other-
a(y,7)= 2 an(y,ne", By, =2 Baly,7)e". wise. The end points of the interval are chosen as the points
n=0 n=0 at which the arguments of the functions in Etj2) are equal

0

(10 to zero. This simplification leads to the result thg(7)
We consider only the zeroth order functiomgand, to see ~ increases approximately linearly in time wher=0(1),
the dominant effects. having the form
It is readily verified that these can be expressed in terms
of the normal probability integral Ro(7)~e(1+0)vT, 17
D (x)= LJ’X e~ u2qy (11)  where the coefficient af 7 is a consequence of our analysis.
V2m) - This linear increase in time d®qy(7) is not surprising since

the effect of the field must dominate the effect of diffusion in
feeding fresh particles of one of the species into the comple-
mentary region. Because of the dominating effect of the field

as

y+ur only the velocity appears in Eq17) while D does not, at
ao(y,7)=P 204/ least in the lowest order terms.
T A comparison of Eqs(16) and (17) indicates that the
(12 crossover time between the diffusive and convective regimes
D occurs approximately at a time
ﬁow,r):cb((ew—y) \/2—7)
o =0(1h?). (18)
so that the lowest order approximation to the global produc-
tion rate is . . .
Hence, for chemical systems characterizeckk§v <1, i.e.,
e[+ [y+ur D when the field is small but dominant, we expect to see a
Ro(7)= —f d)( d| (BvT—y) 2—) dy. (13 crossover between Eggl6) and(17) at time of the order of
)= v2Dhr T v~ 2 as illustrated by the curves in Fig. 3. However, it is

obvious that whemw =0O(1)> ¢ the diffusive regime will be
almost unobservable.

The crossover of the production rate fraff® to t ex-
lains very well the experimental data of Fig. 2 which ex-
ibit the same behavior. This permits a better understanding
of the early-time behavior in the capillary experiments.
Moreover, Eq(18) enables one to extract an estimate for the
bias strength from the crossover time.

When 7 is fixed ag(y,7) increases as a function ¢f and
Bo(y,7) decreases as a functionpf Hence Eq(13) can be
put into a slightly more transparent form by noting that the
maximum value of the integrand occurs at a point to beﬁ
denoted byy; . We next transform the variable of integration
in Eq. (13) by writing y=y;+p+27, which converts Eq.
(13) to



54 EFFECTS OF BIAS ON THE KINETICS OR+B—C ... 5945

107? . ‘ . 10™
g=10"°
10™
107
) £ 10
z & 10
107
107
10-8 L 1 L 10—3 L L L 1
10’ 10° 10° 10* 10° 10° 10’ 10° 10° 10* 10°
t t
FIG. 3. Curves of the global reaction ra®ét) generated using FIG. 4. Curves of the global reaction rat®(t) in

the split-step algorithm described if] for the case<v<1. The the case v<e<l for q=0.1 (fixed and various
values of the parametefS, ,Eg,q (which are discrete surrogates Ea=Eg=10"2,10"3,10 %10 °. As can be seen, at short times the
for va,vg.k) are Ep=Eg=10"2 (fixed and various behavior is mainly diffusive and independent of the value€gf
q=10"%,10"7,10"8. The slope is seen to change from being pro-andEg. The asymptotic behavior tends towards a constant.
portional tot'? to being proportional to at times that are the order
of E;2.
The equation satisfied by, is then found from Eq(9) to be
The curves in Fig. 3 were generated by numerically solv-

ing a discretized version of the partial differential equationsga; Pa;  day
using the split-step algorithf]. The numerical algorithm —— =D —=7 v —==—0o(y,7) =La1=Go(y. 7). (20

- e T y y
replaces the rates and velocities by event probabilities for the

purpose of deriving a numerical solution. Thus the biasing, harel is the indicated diffusion operator. Equatie0) is
field in the continuum picture is modeled in terms of differ- to be solved subject to the initial conditiam(y,0)=0. On

e_nt prtgrbhablhtles f%r mowgg n thedpEosmve;]_(l)r nﬁgatlve (.j'rec'introducing the Green’s function associated witlone finds
tions. These are denoted By and Eg, while the reaction that a;(y,7) can be expressed as

rate is replaced by a finite probability of reaction on contact,
q

e . . 1 rdr’ [+
Using the same algorithm, we find that wheg,vg<k, - _j _j e
the short-time behavior resembles diffusion while the times ly:7) JamDJo 7' J)-= Goly= &7 7)
at which the velocity terms become important are greater 2
than 1£ so that the bias is significant only at long times. At xexp[ _ (Etor ) }d 21)
these times the production rates and the width of the front 4D 7' '
become independent of time. This behavior is shown in Fig.
4 for the global reaction rate. As can be seen from the uppewith an analogous formula fg8,(y, ) except thaD is to be
curve forE,=Eg=10"2, the crossover due to the bias startsreplaced byD 1.
at times of ordep 1, and the rate becomes constant at times An approximation tox,(y,7) based on the small value of

of orderv 2. 7 is also readily calculated. The starting point in the calcu-
lation is that at short times the exponential term in Ex)
can be approximated by
lll. FIRST CORRECTION TERMS
One can develop approximations tg, and 8, in the 1 (é+v7')? .
- inlic i ; : —eXp ——=——(~6(étvT). (22
same spirit. For simplicity of notation we define the function JanD7 4D 7

Jo(Y, )= ao(y,7) BolY,7) In this approximation Eq(21) is replaced by

—@(y+vT>®((6 —y) R) (19
TP vT—Yy \/27_ . al(y,T)Nngo(y+UT,' —7')d7’. 23
N 0
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As a second step, in order to get a reasonably compact result

we make the further approximation 10
A 1, —vA=sp=s6vA »
Golp,2)= 0, otherwise 29
which is equivalent to the approximation utilized in finding 10° ¢
the result in Eq(17). This allows us to evaluate the integral
in Eqg. (23) exactly,
H
) vT—Yy H(o
ay(y,7)~min A+ 0w (Bv7—y),7
10°
=T e 25
“ Aoy 0Ty, @9
with a similar result holding foB,(y,7). In this equation
H(z) is the Heaviside step function. Hence, whers fixed )
the time-dependent parts of both(y,7) and 8,(y,7) are 10,5 i 0% 0° o 0°
essentially proportional te. The correction term in the ex- t

pansion of the global reaction rate, FIG. 5. An illustration of the crossover in the behavior of the

width of the reaction frontv(t) from being proportional ta*? to
R(7)=Ro(7) +eRy(7)+ -, (26)  being proportional ta for e¢<v<1. The parameters are those used
to generate Fig. 3, i.eE,=Ez=10"2 andq=10 107,10 8.
. \ s
is therefore The crossover occurs at time of ordeg ©, and the three curves for
variousq are indistinguishable at times less thgn?.

+oo independent of the reaction rate constant in times which are
Ri(7)= [ag(€,7)B1(€,7)+ a1(€,7)Bo(€,7)]dE. smaller than the order o 1.

(27)
IV. DISCUSSION

On again making use of th2e approximatiomo(¢, 7) The results presented in this paper provide a direction to
~H(y+uv7) we find thatR,(7) = 7* for very small values of  interpret experimental results which do not exhibit pure dif-
7. This should be contrasted with the result obtaine6h  fysjve kinetic behavior in the system with initially separated
which does not include a field. In that case we found thajeactants. The crossovers in macroscopic dynamic quantities,
Ry ()72 for small . It would therefore appear that the in particular the global production rate, have already been
field is_ the dominant factor in determining the short-time ghown to help in determining the microscopic reaction con-
behavior of the global reaction rate. y stant. In this work we have shown how crossovers induced
Similarly the reaction front center, i.e., the position atpy small bias fields can indicate the existence of such fields
which the reaction rate is a maximum, is also determined bynd their magnitude relative to the reaction. In the same
the field, at least in the zeroth order approximation. To Se&pjrit one can try to control such external fields through the
this we need to maximize the functigg(y, 7) defined in EQ.  pressure imposed on the reactants on both sides of the cap-
(19 as a function ofy. The maximum is seen to occur at jljary. In future work we plan to extend the experimental
yt o7 which contrasts with the behavigr 72 which is  tests of the theoretical predictions of this paper, as well as to
the result in the absence of the field. examine the possible case in which the small field effect is

The final parameter to be considered is the width of thenot continuous, but rather terminates after some short time.
reaction frontw(t) as defined in Eq(4). An approximation

to the width is readily calculated taking only the contribution
from Ry(&,7) into account. The calculation closely follows
that used to find the global reaction rakg(r), so we con- We gratefully acknowledge the support given by the
fine ourselves to reporting the results. At short timesisrael Science FoundatiofH.T.), NSF Grant No. DMR-
w(t)e \t and at longer times, i.e., at times of ordef?, the ~ 94-10709(A.Y. and R.K), and the US-Israel Bi-National
field dominates and one findg(t)ot. An illustration of this  Science FoundatioR.K., S.H., and G.H.W, We thank
behavior is shown in Fig. 5. As can be seen, the width isAnna Lin for help and advice in the experiments.
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